parameters#
- class Hdf5Compression(*values)#
- gzip = 'gzip'#
- bitshuffle_with_zstd = 'bitshuffle_with_zstd'#
- none = None#
- class CustomBaseModel#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class OmParameters(*, parallelization_layer, data_retrieval_layer, processing_layer, source='', configuration_file=PosixPath('.'))#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
parallelization_layer (str)
data_retrieval_layer (str)
processing_layer (str)
source (str)
configuration_file (Path)
- parallelization_layer: str#
- data_retrieval_layer: str#
- processing_layer: str#
- source: str#
- configuration_file: Path#
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class DataSourceParameters(*, type, **extra_data)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
type (str)
extra_data (Any)
- type: str#
- model_config: ClassVar[ConfigDict] = {'extra': 'allow'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class DataRetrievalLayerParameters(*, asapo_url=None, asapo_path=None, asapo_data_source=None, asapo_has_filesystem=None, asapo_token=None, asapo_group_id='default_om_group', buffer_size=None, psana_calibration_directory=None, data_sources, node_pool_size=0)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
asapo_url (str | None)
asapo_path (str | None)
asapo_data_source (str | None)
asapo_has_filesystem (bool | None)
asapo_token (str | None)
asapo_group_id (str)
buffer_size (int | None)
psana_calibration_directory (str | None)
data_sources (dict[str, DataSourceParameters])
node_pool_size (int)
- asapo_url: str | None#
- asapo_path: str | None#
- asapo_data_source: str | None#
- asapo_has_filesystem: bool | None#
- asapo_token: str | None#
- asapo_group_id: str#
- buffer_size: int | None#
- psana_calibration_directory: str | None#
- data_sources: dict[str, DataSourceParameters]#
- node_pool_size: int#
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class Peakfinder8PeakDetectionParameters(*, max_num_peaks, adc_threshold, minimum_snr, min_pixel_count, max_pixel_count, local_bg_radius, min_res, max_res, fast_mode=False, num_pixel_per_bin_in_radial_statistics=100, bad_pixel_map_filename=None, bad_pixel_map_hdf5_path=None)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
max_num_peaks (int)
adc_threshold (float)
minimum_snr (float)
min_pixel_count (int)
max_pixel_count (int)
local_bg_radius (int)
min_res (int)
max_res (int)
fast_mode (bool)
num_pixel_per_bin_in_radial_statistics (int)
bad_pixel_map_filename (Path | None)
bad_pixel_map_hdf5_path (str | None)
- max_num_peaks: int#
- adc_threshold: float#
- minimum_snr: float#
- min_pixel_count: int#
- max_pixel_count: int#
- local_bg_radius: int#
- min_res: int#
- max_res: int#
- fast_mode: bool#
- num_pixel_per_bin_in_radial_statistics: int#
- bad_pixel_map_filename: Path | None#
- bad_pixel_map_hdf5_path: str | None#
- check_hd5_path()#
- Return type:
Self
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class BinningParameters(*, bin_size, min_good_pix_count=None, bad_pixel_value=None, bad_pixel_map_filename=None, bad_pixel_map_hdf5_path=None)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
bin_size (int)
min_good_pix_count (int | None)
bad_pixel_value (int | float | None)
bad_pixel_map_filename (str | None)
bad_pixel_map_hdf5_path (str | None)
- bin_size: int#
- min_good_pix_count: int | None#
- bad_pixel_value: int | float | None#
- bad_pixel_map_filename: str | None#
- bad_pixel_map_hdf5_path: str | None#
- check_hd5_path()#
- Return type:
Self
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class XesParameters(*, intensity_threshold=None, rotation_in_degrees, geometry_file, data_broadcast_url=None, data_broadcast_interval, time_resolved=False, min_row_in_pix_for_integration, max_row_in_pix_for_integration, running_average_window_size, speed_report_interval, hit_frame_sending_interval=None, non_hit_frame_sending_interval=None)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
intensity_threshold (float | None)
rotation_in_degrees (float)
geometry_file (str)
data_broadcast_url (str | None)
data_broadcast_interval (int)
time_resolved (bool)
min_row_in_pix_for_integration (int)
max_row_in_pix_for_integration (int)
running_average_window_size (int)
speed_report_interval (int)
hit_frame_sending_interval (int | None)
non_hit_frame_sending_interval (int | None)
- intensity_threshold: float | None#
- rotation_in_degrees: float#
- geometry_file: str#
- data_broadcast_url: str | None#
- data_broadcast_interval: int#
- time_resolved: bool#
- min_row_in_pix_for_integration: int#
- max_row_in_pix_for_integration: int#
- running_average_window_size: int#
- speed_report_interval: int#
- hit_frame_sending_interval: int | None#
- non_hit_frame_sending_interval: int | None#
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class RadialProfileParameters(*, speed_report_interval, data_broadcast_interval, hit_frame_sending_interval, non_hit_frame_sending_interval, data_broadcast_url=None, radius_bin_size, geometry_file, post_processing_binning=False, bad_pixel_map_filename=None, bad_pixel_map_hdf5_path=None, running_average_window_size, num_radials_to_send, num_hits_in_cum_radial_avg, total_intensity_jet_threshold=-1.0, background_subtraction=False, background_profile_filename='', background_profile_hdf5_path='', background_subtraction_min_fit_bin=-1, background_subtraction_max_fit_bin=-1, sample_detection=True, minimum_roi1_to_roi2_intensity_ratio_for_sample=-1.0, maximum_roi1_to_roi2_intensity_ratio_for_sample=-1.0, estimate_particle_size=False, size_estimation_method='guinier', roi1_qmin=-1.0, roi1_qmax=-1.0, roi2_qmin=-1.0, roi2_qmax=-1.0, guinier_qmin=-1.0, guinier_qmax=-1.0)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
speed_report_interval (int)
data_broadcast_interval (int)
hit_frame_sending_interval (int)
non_hit_frame_sending_interval (int)
data_broadcast_url (str | None)
radius_bin_size (int)
geometry_file (str)
post_processing_binning (bool)
bad_pixel_map_filename (str | None)
bad_pixel_map_hdf5_path (str | None)
running_average_window_size (int)
num_radials_to_send (int)
num_hits_in_cum_radial_avg (int)
total_intensity_jet_threshold (float)
background_subtraction (bool)
background_profile_filename (str)
background_profile_hdf5_path (str)
background_subtraction_min_fit_bin (int)
background_subtraction_max_fit_bin (int)
sample_detection (bool)
minimum_roi1_to_roi2_intensity_ratio_for_sample (float)
maximum_roi1_to_roi2_intensity_ratio_for_sample (float)
estimate_particle_size (bool)
size_estimation_method (Literal['guinier', 'sphere', 'peak'])
roi1_qmin (float)
roi1_qmax (float)
roi2_qmin (float)
roi2_qmax (float)
guinier_qmin (float)
guinier_qmax (float)
- speed_report_interval: int#
- data_broadcast_interval: int#
- hit_frame_sending_interval: int#
- non_hit_frame_sending_interval: int#
- data_broadcast_url: str | None#
- radius_bin_size: int#
- geometry_file: str#
- post_processing_binning: bool#
- bad_pixel_map_filename: str | None#
- bad_pixel_map_hdf5_path: str | None#
- running_average_window_size: int#
- num_radials_to_send: int#
- num_hits_in_cum_radial_avg: int#
- total_intensity_jet_threshold: float#
- background_subtraction: bool#
- background_profile_filename: str#
- background_profile_hdf5_path: str#
- background_subtraction_min_fit_bin: int#
- background_subtraction_max_fit_bin: int#
- sample_detection: bool#
- minimum_roi1_to_roi2_intensity_ratio_for_sample: float#
- maximum_roi1_to_roi2_intensity_ratio_for_sample: float#
- estimate_particle_size: bool#
- size_estimation_method: Literal['guinier', 'sphere', 'peak']#
- roi1_qmin: float#
- roi1_qmax: float#
- roi2_qmin: float#
- roi2_qmax: float#
- guinier_qmin: float#
- guinier_qmax: float#
- check_hd5_path()#
- Return type:
Self
- check_background_subtraction()#
- Return type:
Self
- check_sample_detection()#
- Return type:
Self
- check_particle_size_estimation()#
- Return type:
Self
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class CheetahParameters(*, processed_directory, processed_filename_prefix='processed', processed_filename_extension='h5', hdf5_fields, hdf5_file_data_type=None, hdf5_file_compression=Hdf5Compression.none, hdf5_file_gzip_compression_level=4, hdf5_file_zstd_compression_level=3, hdf5_file_compression_shuffle=False, hdf5_file_max_num_peaks=1024, write_class_sums, class_sums_sending_interval=-1, class_sums_update_interval, class_sums_filename_prefix='sums', status_file_update_interval, responding_url=None, external_data_request_list_size=20)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
processed_directory (str)
processed_filename_prefix (str)
processed_filename_extension (str)
hdf5_fields (dict[str, str])
hdf5_file_data_type (str | None)
hdf5_file_compression (Hdf5Compression)
hdf5_file_gzip_compression_level (int)
hdf5_file_zstd_compression_level (int)
hdf5_file_compression_shuffle (bool)
hdf5_file_max_num_peaks (int)
write_class_sums (bool)
class_sums_sending_interval (int)
class_sums_update_interval (int)
class_sums_filename_prefix (str)
status_file_update_interval (int)
responding_url (str | None)
external_data_request_list_size (int)
- processed_directory: str#
- processed_filename_prefix: str#
- processed_filename_extension: str#
- hdf5_fields: dict[str, str]#
- hdf5_file_data_type: str | None#
- hdf5_file_compression: Hdf5Compression#
- hdf5_file_gzip_compression_level: int#
- hdf5_file_zstd_compression_level: int#
- hdf5_file_compression_shuffle: bool#
- hdf5_file_max_num_peaks: int#
- write_class_sums: bool#
- class_sums_sending_interval: int#
- class_sums_update_interval: int#
- class_sums_filename_prefix: str#
- status_file_update_interval: int#
- responding_url: str | None#
- external_data_request_list_size: int#
- check_sums_update_interval()#
- Return type:
Self
- classmethod check_status_file_update_interval(v)#
- Parameters:
v (int)
- Return type:
int
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class CrystallographyParameters(*, peakfinding_algorithm='peakfinder8', min_num_peaks_for_hit, max_num_peaks_for_hit, peakogram_intensity_bin_size=100.0, peakogram_radius_bin_size=5.0, running_average_window_size, post_processing_binning=False, pump_probe_experiment=False, geometry_file, geometry_is_optimized=False, speed_report_interval, data_broadcast_url=None, responding_url=None, external_data_request_list_size=20, data_broadcast_interval, hit_frame_sending_interval=0, non_hit_frame_sending_interval=0)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
peakfinding_algorithm (str)
min_num_peaks_for_hit (int)
max_num_peaks_for_hit (int)
peakogram_intensity_bin_size (float)
peakogram_radius_bin_size (float)
running_average_window_size (int)
post_processing_binning (bool)
pump_probe_experiment (bool)
geometry_file (str)
geometry_is_optimized (bool)
speed_report_interval (int)
data_broadcast_url (str | None)
responding_url (str | None)
external_data_request_list_size (int)
data_broadcast_interval (int)
hit_frame_sending_interval (int)
non_hit_frame_sending_interval (int)
- peakfinding_algorithm: str#
- min_num_peaks_for_hit: int#
- max_num_peaks_for_hit: int#
- peakogram_intensity_bin_size: float#
- peakogram_radius_bin_size: float#
- running_average_window_size: int#
- post_processing_binning: bool#
- pump_probe_experiment: bool#
- geometry_file: str#
- geometry_is_optimized: bool#
- speed_report_interval: int#
- data_broadcast_url: str | None#
- responding_url: str | None#
- external_data_request_list_size: int#
- data_broadcast_interval: int#
- hit_frame_sending_interval: int#
- non_hit_frame_sending_interval: int#
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class MonitorParameters(*, om, data_retrieval_layer, peakfinder8_peak_detection=None, radial_profile=None, binning=None, crystallography=None, xes=None, cheetah=None)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
om (OmParameters)
data_retrieval_layer (DataRetrievalLayerParameters)
peakfinder8_peak_detection (Peakfinder8PeakDetectionParameters | None)
radial_profile (RadialProfileParameters | None)
binning (BinningParameters | None)
crystallography (CrystallographyParameters | None)
xes (XesParameters | None)
cheetah (CheetahParameters | None)
- om: OmParameters#
- data_retrieval_layer: DataRetrievalLayerParameters#
- peakfinder8_peak_detection: Peakfinder8PeakDetectionParameters | None#
- radial_profile: RadialProfileParameters | None#
- binning: BinningParameters | None#
- crystallography: CrystallographyParameters | None#
- xes: XesParameters | None#
- cheetah: CheetahParameters | None#
- check_peakfinder8_peak_detection_parameters()#
- Return type:
Self
- check_binning_parameters()#
- Return type:
Self
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].